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Abstract

A closing crack causes the dynamic behaviour of a vibrating system to be significantly nonlinear.The
main distinctive features of such a vibrating system are the appearance of sub- and superharmonic
resonances, and the significant nonlinearity of the vibration responses at sub- and superharmonic
resonances (displacement, acceleration, strain, etc.). The nonlinear effects are much more sensitive to the
presence of a crack than are either the change of natural frequencies and mode shapes or the generation of
high harmonics in the spectrum of vibration at principal resonance or far from resonance. Thus, the
appearance of sub- and superharmonic resonances may prove to be useful, highly sensitive indicators of a
crack’s presence at very early stages of its nucleation; moreover, the level of response nonlinearity in this
regime may provide a quantitative evaluation of damage parameters (type, size and location).
At the same time, the manifestation of nonlinear effects depends not only on the crack parameters but

also on the level of damping in a vibrating system. Recent experimental tests have revealed that crack
nucleation and growth result in an increase of damping in a vibrating system. Consequently, the influence
of crack’s parameters upon the nonlinear effects should be determined while taking into account the change
of damping in a vibrating system rather than assuming either constant damping or the total absence of
damping.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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The empirical relationship between energy dissipated in a crack and nominal stress intensity factor range,
estimated by curve-fitting experimental data, has been introduced into an FE model of a beam with a
closing crack, and the influence of the damping level on the nonlinear dynamic behaviour of the beam was
investigated.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Increasingly over recent years, according to the literature available, attention has been focussed
on the investigations of sub- and superharmonic resonance regimes of vibration for application to
the problem of damage diagnostics [1–8], partly due to the fact that these regimes of vibration are
highly sensitive to the presence of damage of fatigue crack type [1,4–8].
The mathematical modelling of such cracks is usually based on the assumption that a crack

periodically closes and opens in the process of cyclic deformation of a structure (and, for this
reason, it is often termed a ‘‘closing’’ or ‘‘breathing’’ crack), leading to the instantaneous change
of structure stiffness. In this case, the change of the stiffness of the cracked structure is modelled
by the unsymmetrical piecewise linear characteristic of the restoring force [9,10], or by specific
modification of the driving force [11].
A closing crack causes the dynamic behaviour of a vibrating system to be significantly

nonlinear, giving rise to a number of fundamental difficulties with regard to determining
analytical solutions. Numerical analyses [1–6,8] and a small number of experimental investiga-
tions [1,6,8] on the forced vibrations of beams with a closing crack have demonstrated that the
main distinctive features of such a vibration system are the appearance of sub- and superharmonic
resonances and the significant nonlinearity of the vibration responses at sub- and superharmonic
resonances (displacement, acceleration, strain etc.). Here, these phenomena are termed as ‘the
nonlinear effects’.
For instance, in Ref. [3], a step-sine test on cantilever beam with a closing crack was simulated

and the amplitude response around the principal and superharmonic of order 2=1 resonances was
obtained (Fig. 1), the latter being the result of the essential nonlinearity of the restoring force
characteristic. It is important to note that the amplitude of the superharmonic resonance is
considerably less than the resonance amplitude.
The nonlinear effects are much more sensitive to the presence of a crack than either the change

of natural frequencies and modeshapes (by one or even two orders of magnitude) or the
generation of high harmonics in the spectrum of vibration at principal resonance or far from
resonance [7,8].
Thus, the appearance of superharmonic resonances may prove to be useful as highly sensitive

indicators of crack presence at very early stages of its nucleation; moreover, the level of vibration
response nonlinearity in this regime may provide a quantitative evaluation of the damage
parameters (type, size and location). In comparison with the even superharmonic resonance
regimes, the subharmonic regimes of vibration are less efficient for diagnostics of small cracks
[1,4,7] and therefore are not considered in the present paper.
However, as concerns the practical implementation of damage diagnostics using the super-

harmonic resonance regimes of vibration at least three essential obstacles must be negotiated.
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Fig. 1. Amplitude response of a cracked beam obtained by a step-sine test.
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The first obstacle is associated with the fact that the mentioned regimes may arise in the
presence of any type of nonlinearity of a vibrating system, including symmetrical elastic
nonlinearity [12], geometrical nonlinearity [4], or as a result of nonlinear damping [13]. In
subsequent sections of this article, it is assumed that for the cases considered, the influence of these
nonlinear effects is negligible and do not cause the nonlinear regimes of vibration to be exhibited.
It is considered by the authors that this assumption is true for most real structures at low levels of
vibrations having internal damping, which is not dry friction in nature. Indeed the amplitudes of
forced vibrations at a frequency far from the frequency of principal resonance are very small. In
addition, as was shown in Ref. [4] using the example of forced vibrations of a cantilever beam, a
threshold value of driving force exists below which it is not possible to excite the superharmonic
vibrations of an undamaged structure in the presence of geometrical nonlinearity. Correspond-
ingly, the unsymmetrical piecewise linear characteristic of the restoring force that models a fatigue
crack and represents a particular case of elastic nonlinearity is related by the classification of
Vulfson and Kolovsky [13] to the class of essentially nonlinear functions. This essential
nonlinearity is exhibited even in the presence of very small cracks and can cause superharmonic
vibrations [1,4,7] at very low amplitudes of driving force.
The second obstacle is particularly important from a practical point of view. As a matter of

fact, it is difficult to ensure the rigorously harmonic excitation of vibrations. If the frequency of
one of the harmonics in the spectrum of driving force coincides with the resonance frequency of a
vibrating system, then the vibrations of a linear system similar to superharmonic resonance of
order j=i will arise (the order j=i of nonlinear regime indicates how many natural periods of
vibration j fall at i periods of external harmonic excitation [4]). The authors term this regime
‘pseudo-superharmonic’ because, in this case, both forced vibrations at the frequency of main
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driving harmonic and resonance vibrations excited by additional harmonics occur. Considering
that in practice all excited systems cause distortion of a harmonic driving force to some extent, the
need to prevent pseudo-superharmonic regime arises. The idea described in the work of Magone
and Beresnevich [14] makes it possible to avoid the pseudo-superharmonic resonance vibration
but, unfortunately, the work does not demonstrate the practical implementation of this concept.
In previously published experimental works [1,6] the possibility of exciting pseudo-super-

harmonic vibrations has not been considered and hence the extent of excitation system
harmonicity has not been estimated. Consequently, this aspect, of fundamental importance for the
practical feasibility of damage diagnostics based on the utilisation of superharmonic regime, is the
subject of on-going research.
The essence of the third obstacle lies in the fact that, as has been shown in Ref. [7], the

manifestation of nonlinear effects depends not only on the crack parameters but also on the level
of damping in a vibrating system. The data of direct experimental investigations [15–19] attest that
the fatigue crack growth is accompanied by a considerable increase in the damping characteristic
of cracked specimens. Consequently, the influence of the crack parameters on the nonlinear effects
should be determined by taking into account the change of damping in a vibrating system rather
than assuming constant damping, which has been the case in the past [1–5], or without damping at
all [9,11]. If the increase in damping is neglected, the prediction of damage magnitude will be
erroneous.
Correspondingly, the aim of this work has been to investigate the influence of damping on the

level of nonlinearity of the vibration response at the superharmonic resonance based on the finite
element model of a beam with a closing crack which takes into consideration the change of
damping due to the crack growth.
2. Model of cracked beam taking into account real energy dissipation in a crack

The mathematical model used for the cantilevered beam with a transverse one edge non-
propagating closing crack is based on the Finite Element Model proposed in Ref. [2], and here, for
the sake of completeness, it is presented briefly.
2.1. Stiffness matrix

According to the principle of Saint-Venant, the stress field is influenced only in the region
adjacent to the crack. Consequently, the element stiffness matrix, with the exception of the terms
representing the cracked element, may be regarded as unchanged under a certain limitation of the
element size.
The general approach to the problem is that, for the cracked beam element, the elements

situated on one side can be regarded as external forces (bending moment M and shear force P)
applied to the cracked element, while the elements on the other side can be regarded as
constraints. In this way the flexibility matrix can be easily calculated and then, from the
conditions of equilibrium, the stiffness matrix of the cracked element can be derived. With
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shearing action neglected, the strain energy of an element of length l without a crack is

W ð0Þ ¼
1

2EI

Z l

0

ðM þ PxÞ2 dx, (1)

where E is Young’s modulus and I is the inertia moment of the transversal section, while the
additional stress energy due to the crack can be expressed as

W ð1Þ ¼ b

Z a

0

f½ðK IM þ K IPÞ
2
þ K2

IIP�=E0gda (2)

with

K IM ¼ ð6M=bh2Þ
ffiffiffiffiffiffi
pa

p
F IðsÞ, (3)

K IP ¼ ð3Pl=bh2Þ
ffiffiffiffiffiffi
pa

p
F IðsÞ, (4)

KIIP ¼ ðP=bhÞ
ffiffiffiffiffiffi
pa

p
F IIðsÞ, (5)

and

F IðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=psÞ tanðps=2Þ

p
½0:923þ 0:199ð1� sinðps=2Þ4Þ�= cosðps=2Þ, (6)

F IIðsÞ ¼ ð3s � 2s2Þð1:122� 0:561s þ 0:085s2 þ 0:18s3Þ=
ffiffiffiffiffiffiffiffiffiffiffi
1� s

p
, (7)

where E0 ¼ E for plane stress, E0 ¼ E=ð1þ nÞ for plane strain, n is the Poisson ratio, s ¼ a=h is the
relative crack size, a is the crack depth, h and b are the height and the width of the cross-section,
respectively and K I and KII are stress intensity factors for opening type and sliding type cracks,
respectively.
The term c

ð0Þ
ik of the flexibility matrix Cð0Þ

e for an element without crack is derived by means of
Castigliano’s theorem in the linear elastic range:

c
ð0Þ
ik ¼

q2W ð0Þ

qPiqPK

¼ c
ð0Þ
ki ; i; k ¼ 1; 2 P1 ¼ P; P2 ¼ M. (8)

The term c
ð1Þ
ik of the additional flexibility matrix Cð1Þ

e due to the crack is calculated in the same
way:

c
ð1Þ
ik ¼

q2W ð1Þ

qPiqPk

¼ c
ð1Þ
ki ; i; k ¼ 1; 2 P1 ¼ P; P2 ¼ M. (9)

Consequently, the term cik of the total flexibility matrix for the damaged element Ce is

cik ¼ c
ð0Þ
ik þ c

ð1Þ
ik . (10)

From the equilibrium condition

ðPi Mi Piþ1 Miþ1Þ
T
¼ TðPiþ1 Miþ1Þ

T, (11)
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where

T ¼

�1 0

�l �1

1 0

0 1

2
6664

3
7775. (12)

By the Principle of the Virtual Work, the stiffness matrix of the undamaged element is

Ke ¼ TCð0Þ�1
e TT, (13)

or

Ke ¼
EI

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

2
6664

3
7775, (14)

while the stiffness matrix of the cracked element may be derived as

Ke ¼ TC�1
e TT. (15)

The global stiffness matrix K is obtained assembling the elements stiffness matrices Ke.
2.2. Mass matrix

In order to evaluate the dynamic response of the cracked beam when acted upon by an applied
force, it is supposed that the crack does not affect the mass matrix M. Therefore, for a single
element:

Me ¼
ml

420

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

2
6664

3
7775, (16)

where m is the mass per unity length of the beam.
2.3. Damping matrix

For the purpose of this article, particular attention must be paid to the calculation of the
damping matrix D.
Considering a proportional damping model [20], the damping matrix D has been calculated

through the inversion of the mode shape matrix relative to the undamaged structure:

D ¼ ðUTÞ
�1dU�1, (17)
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where

d ¼ 2

z1o1M1 0 . . . 0

. . . z2o2M2 . . . 0

. . . . . . . . . . . .

0 0 . . . znonMn

2
66664

3
77775, (18)

in which zi is the ith modal damping ratio, oi is the ith natural frequency and Mi is the ith modal
mass relative to the undamaged beam.
The modal damping ratio of the cracked beam is related to the logarithmic decrement of

vibrations dc (LDV) used in the experimental tests (see Section 3) by the following expression:

zi ¼ dc=2p. (19)

Taking into account the relationship between the LDV of the undamaged beam (initial level of
damping) d and the damping ratio c,

dðsaÞ ffi
1

2
cðsaÞ,

where cðsaÞ ¼ DUðsaÞ=UðsaÞ, it is possible to express dc of the specimen with a closing crack in
the following way [20]:

dcðsaÞ ffi
DUðsaÞ þ DUcðDK IÞ

2UðsaÞ
¼ dðsaÞ þ

DUcðDKIÞ

2UðsaÞ
. (20)

In formula (20) d is the LDV of the undamaged beam (initial level of damping), sa is the
maximum stress amplitude, DUc is the energy dissipated in the crack per cycle, U is the strain
energy of the beam and DK I is the nominal stress intensity factor range. The strain energy for the
cantilever beam without the end mass was calculated by

UðsaÞ ¼
bhL

18E
s2a, (21)

where L is the length of the beam.
As a result of experimental investigation [21] it was shown that the absolute value of energy

dissipation in a non-propagating fatigue crack is uniquely determined by the variation of the
nominal stress intensity factor range DK I by the following equation:

DUc ¼ b  ð8:634675� 10�5DK I þ 3:87315� 10�4DK2
I � 1:29826� 10�5DK3

I Þ. (22)

The value of DK I for the case of symmetric vibrations was determined by the formula [22]

DK I ¼ sc
a

ffiffiffiffiffiffi
pa

p
ð1:122� 1:40s þ 7:33s2 � 13:08s3 þ 14:0s4Þ, (23)

where sc
a is the nominal stress amplitude in the cracked cross-section.

2.4. Equation of motion

When the crack closes and its interfaces are completely in contact with each other, the dynamic
response can be determined directly as that of the uncracked beam. However, when the crack
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Fig. 2. The cracked element.
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opens the stiffness matrix of the cracked element should be introduced in replacement at the
appropriate rows and columns of the general stiffness matrix.
Under the action of the excitation force F, crack opening and closing alternate in time, making

the equations of motion of the cracked beam nonlinear:

M€uþD_uþ Ku ¼ F, (24)

where

K ¼ Ku � gDK (25)

with

DK ¼ Ku � Kd, (26)

denoting the changes in the global stiffness matrix due to the crack and

g ¼
1 when the crack is open;

0 when the crack is closed:



(27)

Since an exact solution of these equations does not exist, a numerical method must be adopted
to simulate the dynamic behaviour of the cracked beam, proceeding step-by-step in time. In such a
simulation, to determine the state of the crack, i.e. whether opened or closed, it is sufficient to
evaluate the slopes yi, yiþ1, of the response deformation at the ‘control’ nodes, i; i þ 1, closest to
the crack (where i is the node closer to the fixed end of the beam, as shown in Fig. 2). For a crack
on the upper side of the beam, the condition of crack closing is then equivalent to yioyiþ1.
According to Bathe and Gracewski [23], it is possible to write an incremental form of the

nonlinear equation of motion for the cracked beam that can be solved with an implicit time
integration scheme and the modified Newton iteration.
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3. Validation of the model by the results of tests

The results of four specimens of materials, possessing different damping properties, were used
to determine the validity of the FE model of a beam with a closing crack presented in Section 2.
The tests were performed using the experimental set-up KD-1M [24]. The set-up KD-1M was

devised for the determination of the damping characteristic of specimens with high accuracy and
resolving ability, for the high-cycle fatigue testing of specimens and for the execution of spectral
analysis of the vibration response of strain and acceleration at the principal and superharmonic
vibration resonances of the specimens.
The vibrating system consists of the specimen rigidly fixed in the massive (approx. half-ton)

frame, which is suspended on thin steel wires in order to isolate the vibrating system (Fig. 3). The
resonance method was used to excite the first bending mode of vibration by means of an
electromagnetic system including a waveform generator and power amplifier. The specimens were
tested in the plane of maximal resistance to bending, with ferromagnetic plates being attached on
the end of the specimens to create the interaction with the electromagnets. The measuring system
consisted of a strain gauge and accelerometer, the signals from which were passed through the
amplifiers, visualised using a double-channel oscilloscope, and acquired for subsequent data-
processing using a computer-based system.
Fatigue cracks were grown from sharp concentrators through fatigue testing. The measure-

ments of the depths of cracks were executed by an optical microscope, the absolute error being
�0:1mm. The strain gauges were polished before testing for the better observation of a crack.
The dimensions of the specimens gauge length and mechanical properties of the materials are

shown in Table 1, where Lc, Lac and Lsg are the locations of the crack, the accelerometer and the
strain gauge; r is the density; s�I and sy are the fatigue limit and the yield stress of materials,
respectively.
At stress levels, which are of interest for practical engineering applications, the damping

characteristics of materials and structural elements are dependent on the stress amplitude.
Therefore, the investigations of damping properties of cracked specimens were conducted based
on the analysis of amplitude dependencies of damping characteristics. These dependencies were
determined by the free oscillation method and, as regards the damping characteristic, the LDV
was used:

d ¼
1

N
ln

ai

aiþN

� �
, (28)

where ai and aiþN are the amplitudes of ith and ði þ NÞth cycles of vibration, respectively. The
relative error of the LDV determination did not exceed 10%.
In general, commercially available spectrum analysers offer insufficient resolution to permit the

evaluation of the presence of a closing crack through nonlinear distortions of the vibration
response at resonance regimes of vibration. For this reason, a PC-based highly sensitive system
for spectrum analysis of different vibration responses and special software were developed [24].
This system was also used for the spectrum analysis of vibration responses at superharmonic
resonance and for the determination of the LDV.
It is common practice to investigate the forced vibrations of different systems based on the

assumption that a driving force is harmonic. However, it is extremely difficult in practice to
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Fig. 3. Schematic diagram of the experimental set-up KD-1M.
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generate religiously harmonic excitation of vibrations. In reality, the spectrum of driving force
contains higher harmonics. As a consequence, if the frequency of the driving force is several times
lower than the frequency of principal resonance, it may give rise to the so-called pseudo-
superharmonic vibrations, which are similar in appearance to the superharmonic ones. Such a
regime of vibrations takes place when the frequency of one of the high harmonics in the spectrum
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Table 1

Dimensions of specimens and mechanical properties of materials

Material of a specimen L Lc Lac Lsg h b E r n s�1 sy

# mm mm mm mm mm mm Gpa kg=m3 # MPa MPa

Titanium alloy VT-8 230 13 142 9 20 4 127 4480 0.3 500 950

Carbon steel 3 230 14 138 8 20 4 200 7800 0.26 140 N/A

Duralumin alloy D-16 230 14 142 7 20 4 71 2800 0.31 130 290

Cu-Al alloy 230 2 142 7 20 4 116 7500 0.29 185 350
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of driving force coincides with the frequency of principal resonance. It should be noticed that in
contrast to the pseudo-superharmonic vibrations, the excitation of pseudo-subharmonic
vibrations is impossible in principle. From this point of view, the subharmonic regimes of
vibration are more reliable than superharmonic ones as applied for damage detection but less
sensitive to the presence of small cracks.
Since the investigations concentrated mainly on the superharmonic resonance of order 2=1, it

was necessary to avoid the presence of second harmonic in the spectrum of driving force. The
practical realisation of this idea depends on the way in which the dynamic load is applied. In our
case, that is based on the use of the electromagnetic system of excitation, a solution was found by
using two electromagnets disposed on opposite sides of the specimen; the voltage was applied to
them with a respective phase shift of p=2 and, as a consequence, the resulting excitation force can
be expressed by the following formula:

F ¼ q0 sin
pt

2

 � sin
pt � p
2

� � n o
. (29)

It is shown in Fig. 4 by the solid line. In Eq. (29) the modulus of functions reflects the fact that
each electromagnet can produce only attractive force. The expansion of this function into the
Fourier series

F ¼ �
8

p
q0

1

3
cos pt þ

1

35
cos 3pt þ

1

99
cos 5pt þ   

� �

� � q0 0:848 cos pt þ 0:073 cos 3pt þ 0:026 cos 5pt þ   ð Þ ð30Þ

confirms that function (29) does not include the even harmonics. In such a way in tests of
specimens the appearance of pseudo-superharmonic resonance of order 2=1 was avoided.
Fig. 5 demonstrates the feasibility of predicting the changes of the LDV of specimens caused by

crack growth. The initial amplitude dependencies of the LDV of specimens (that is in an
undamaged state) are shown by the dashed line. These curves were used for the calculation of the
damping characteristic of the cracked specimens with the use of formula (20). As can be seen from
Fig. 5, the damping properties of a cracked beam can be predicted satisfactorily in this way.
Furthermore, the results of experiments and calculations corroborate the conclusion made in
Ref. [25] that the lower the initial level of damping of the structure, the more the damping increases
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pt

F

q0 abs (sin(pt-π)/2)

q0 abs (sin pt/2) 

Fig. 4. Forces produced by the first (dash line) and the second (dot line) electromagnets and resulting driving force of

two electromagnets (solid line).
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following crack initiation. Of the four materials characterised, titanium alloy VT-8 possesses the
lowest damping properties; thus, it is quite logical that the increase in the LDV for this specimen
LDV with crack growth was the most significant in this case—over three times (Fig. 5(a)).
Table 2 compares experimental data with the results obtained using an FEM with damping

determined from Eq. (20) (the term sa in Table 2 is the stress amplitude of forced vibrations in
experimental investigations of nonlinear effects).
It can be observed that the change of natural frequencies of cracked specimens can be predicted

with accuracy and the difference between the results of experiments and calculations regarding the
LDV of specimens is less than 20%; furthermore, the discrepancy in the second harmonic of the
acceleration response A2 at the principal and superharmonic resonances was less than 35% and
30%, respectively. Moreover, it can be noted that almost all the results of second harmonic
calculations at both resonances exceed the experimental data, which can be explained by the slight
difference between the frequency of the driving force and the super-resonance frequency of the
vibrating system in the tests. In this case, the extent of nonlinearity of the vibration response is of
a somewhat lower level [7].
Thus, it can be concluded that the FE model of the beam with a closing crack proposed here

can satisfactorily predict the damping properties and level of nonlinearity of its forced vibrations,
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Fig. 5. Amplitude dependency of the LDV of titanium alloy VT-8 specimen (a), carbon steel 3 specimen (b), duralumin

alloy D-16 specimen (c), Cu–Al alloy specimen (d): � � � , intact specimens (experiment); � � �, cracked specimens

(experiment); – – –, intact specimens (the results of approximation); ——, cracked specimens (the results of

calculations).

Table 2

Validation of the model by the results of the tests

Material of a specimen a=h Lc=L oc=o sa (MPa) dc A2=A1 (acceleration)

Experiment Theory Experiment Theory Resonance Super-resonance 2/1

Experim. Theory Experim. Theory

VT-8 0.10 0.056 0.994 0.994 9.0 0.0024 0.0021 0.011 0.012 5.16 4.68

St.3 0.14 0.061 0.994 0.994 7.3 0.0035 0.0038 0.008 0.009 4.88 6.47

D-16 0.15 0.061 0.995 0.995 14.1 0.0016 0.0018 0.008 0.011 6.29 8.99

Cu-Al 0.21 0.009 0.981 0.981 8.7 0.0060 0.0050 0.015 0.023 6.97 9.08
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and can therefore be used for the investigations of nonlinear effects in conditions of variations in
the damping level in a vibrating system.
4. Nonlinear effects at superharmonic vibrations

4.1. The influence of damping on the nonlinear effects at principal and superharmonic resonances

The influence of damping on the characteristics of nonlinearity of the beam vibrations was
investigated using the somewhat simplified model of the beam, in which damping was assumed to
be independent of the amplitude of vibration and crack size. The idea was to investigate the
influence of one parameter only (the level of LDV) on the following nonlinear characteristics
relative to the vibrational displacement response at the end of the beam uðtÞ:

R1 ¼ a0=A1 Fzero coefficient ratio;

R2 ¼ A2=A1 Fsecond harmonic coefficient ratio;

R3 ¼
X10
k¼2

Ak=A1 Fharmonics coefficient ratio,

where the coefficient a0 and amplitudes of harmonics Ak are taken from the Fourier series

uðtÞ ¼
a0

2
þ
X1
k¼1

Ak sinðkoF t þ jkÞ,

in which oF is the circular frequency of the exciting force.

For comparison of the sensitivity of different damage indicators also the ratio R4 ¼ oc=o has
been determined, where oc is the natural circular frequency of the structure with a closing crack:

oc ¼
2ooo

oþ oo

.

In the above formula, o and oo are the natural circular frequencies of the intact beam and of the
beam with an open crack, respectively.
For comparison of the sensitivity of different damage indicators the ratio R4 ¼ oo=o has also

been determined.
The calculations were performed at three levels of the LDV (d ¼ 0:0005, 0.005 and 0.05) at

resonance and super-resonance first mode bending vibrations of the beam. The geometrical and
mechanical properties of the beam are L ¼ 0:2m, Lc=L ¼ 0:1, h ¼ 0:02m, b ¼ 0:004m, E ¼

2:06� 1011 N=m2 and r ¼ 7850kg=m3.
As can be seen from Fig. 6, the relative values of second harmonic R2 and zero coefficient R1 at

principal resonance are very small; therefore, to enable reliable evaluation, particularly at small
sizes of crack, it is necessary to use a highly sensitive system for spectral analysis. At the same
time, at superharmonic resonance, even in the case of the smallest crack depth under investigation
ða=h ¼ 0:1Þ, the nonlinear distortion of the beam vibration response is so large that it may be
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easily identified directly even from the screen of oscilloscope since, as at the minimal level of
damping being considered ðd ¼ 0:0005Þ, the amplitude of the second harmonic is already 2.3 times
the amplitude of the main resonance (Fig. 7).
At the principal resonance, the level of damping practically does not influence the nonlinear

effects. At the same time, at superharmonic resonance, the growth of damping essentially
suppresses the dependence of all characteristics of nonlinearity on the relative crack size. The
second harmonic decreases more intensively when the crack size is smaller.
For instance, at relative crack depth a=h ¼ 0:1, the variation of the LDV from d ¼ 0:0005

to d ¼ 0:05 results in a decrease in the ratio R2 by a factor of 8.0 and at a=h ¼ 0:3 by
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a factor of 5.4. In contrast, the ratio R1 decreases up to 2.7 times at a=h ¼ 0:1 and up to 4.8 times
at a=h ¼ 0:3. In this case the harmonics coefficient R3 exceeds the relative value of the second
harmonic coefficient R2 up to 26% at principal and up to 6% at superharmonic resonances of the
beam.
It is important to note that there is no linear relation between the extent of damping growth and

the magnitude of the variation in the nonlinear coefficients. For instance, an increase in the LDV
of two orders of magnitude results in the decrease in nonlinear coefficients values by a factor of
approximately 8.
As can be noted from Fig. 7, the crack growth in the range being investigated causes the

essential increase in the second harmonic and zero coefficient in the spectrum of the displacement
response of the beam at superharmonic resonance. At principal resonance the change of nonlinear
characteristics as well as the change of natural frequency of the beam are considerably smaller
being hardly noticeable against the scale used in Fig.7. It is also evident that the second harmonic
in the spectrum of the displacement response at superharmonic resonance is most sensitive to the
presence of the crack. To verify this assertion, the quantitative estimation of the extent of
variation of all above-mentioned characteristics was determined using the intensity measure of
respective functions at unitary variation of crack size:

V ðsÞ ¼
qRðsÞ

qs
, (31)

where R is the function expressing the dependence of nonlinear characteristics or natural
frequency on the crack size.
The most significant results of the comparative analysis functions are shown in Fig. 8. As might

be expected, the change in the crack depth function of the second harmonic at superharmonic
resonance is the most sensitive. The intensity of change in this function exceeds by up to three
orders of magnitude (depending on the level of damping) the intensity of change of the second
harmonic at resonance and of the natural frequency of the beam. The zero coefficient at
superharmonic resonance has sensitivity comparable to the second harmonic as regards the crack
presence only at minimal damping, and practically coincides with the function for the second
harmonic at the maximum level of damping being investigated.
It must be emphasised that in a number of cases an essential quantitative and qualitative change

of intensity of nonlinear coefficients as far as crack growth may take place. For instance, at
minimal damping the intensity of the second harmonic change from the beginning sharply
increases and then drops almost to zero level, that is at a=h40:3 the change of the second
harmonic is practically insignificant. At the same time, at middle and maximal damping the
sensitivity of the second harmonic to the crack presence, being still high for the aims of damage
diagnostics, depends faintly on the crack size.
Thus, the intensity of change of the characteristics of nonlinearity at superharmonic resonance

is much higher than at the principal one. At superharmonic resonance the most changeable
characteristics with respect to crack growth characteristics are the second harmonic R2 and
coefficient of harmonics R3 and at principal resonance—zero coefficient R1. It follows from Table
3 that the sensitivity of R2 of the end of the beam displacement response at minimal level of
damping exceeds 1218.5 times that at resonance (in the table subscripts ‘‘s’’ and ‘‘r’’ signify the
superharmonic and principal resonant regimes of vibration, respectively). The difference of
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Table 3

The relative intensity of characteristics of nonlinearity change at superharmonic and principal resonances

d a=h ðR1Þs=ðR1Þr ðR2Þs=ðR2Þr ðR3Þs=ðR3Þr

0.0005 0.1 2.5 1218.5 969.4

0.2 5.6 748.6 609.9

0.3 6.9 391.0 318.7

0.005 0.1 1.4 673.2 536.0

0.2 2.6 345.6 283.0

0.3 3.8 212.2 172.6

0.05 0.1 0.9 144.8 116.7

0.2 1.1 104.5 87.2

0.3 1.4 72.7 61.0
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Fig. 8. The effect of crack depth on the velocity of functions RðgÞ change: —�—�—, R2 (superharmonic resonance,

d ¼ 0:05); –�–�–, R2 (superharmonic resonance, d ¼ 0:005);       �       �      , R2 (superharmonic resonance,

d ¼ 0:0005);                  , R1 (superharmonic resonance, d ¼ 0:0005); —�—�—, R2 (principal resonance); %——

%——%, R4.
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sensitivity drops almost to two orders of magnitude at increase of damping and crack depth. The
zero coefficient R1 at superharmonic resonance exceeds its sensitivity at resonance (up to 7 times)
only at minimal damping.
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4.2. Nonlinear effects taking into account the real energy dissipation in a crack

Essentially, the appearance of a crack in an elastic body results in an increase in its damping
characteristic [7]. The model presented here of the cracked beam takes this into account and, as
was shown in Section 3, predicts with sufficient accuracy the change of damping properties of the
beam due to crack growth—the so-called real damping.
Assuming that the damping for the undamaged beam is initially of low level ðd ¼ 0:0005Þ and

independent of the amplitude of vibration, the dependency of the LDV on the stress amplitude
obtained with the model of the damaged beam for different crack depths is shown in Fig. 9. As
can be seen, at such a low initial level of damping, the presence of a relatively small crack results in
a significant increase in the LDV of the beam: approximately 12.8 times at sa ¼ 2MPa, 8.2 times
at da ¼ 10MPa and 7.4 times at sa ¼ 20MPa. In these conditions, the crack growth modifies the
amplitude dependencies of the LDV in an unusual way: the LDV of the cracked beam increases
sharply at small stresses (the explanation of this phenomenon was given in Ref. [25]). This
phenomenon means that the most essential change of damping characteristic due to the crack
growth takes place at small stress amplitudes.
It follows from Fig. 10 that the initial level of the LDV of the beam determines the extent of

change of its damping capacity with crack growth. The higher the initial level of damping, the
lower the change of damping characteristic of the beam with crack growth, assuming all other
0 5 10 15 20
0.000

0.002

0.004

0.006

0.008

σa, MPa

δ c

Fig. 9. The amplitude dependency of the LDV of the beam at different crack depths: ———, a=h ¼ 0; – – – –,

a=h ¼ 0:1;        , a=h ¼ 0:2; –  –  –  –, a=h ¼ 0:3.
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Table 4

Characteristics of nonlinearity of displacement response at the free end of the beam at real damping (d ¼ 0:0005;
a=h ¼ 0:3)

sa (MPa) dc Principal resonance Superharmonic resonance 2/1

R1 R2 R3 R1 R2 R3

5 0.0047 0.1284 0.0175 0.0221 0.5143 3.9583 4.0976

10 0.0041 0.1284 0.0175 0.0221 0.5331 4.1034 4.2454

20 0.0037 0.1284 0.0175 0.0221 0.5625 4.3392 4.4866
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factors remain the same. At sufficiently high levels of damping even a relatively deep crack does
not exert a noticeable influence on the damping characteristic of the beam.
The beam model, accounting for energy dissipation in the crack, was used for the investigation

of nonlinear distortions of vibration of the end of the beam with initial damping d ¼ 0:0005 and
crack depth a=h ¼ 0:3, at three levels of stress amplitudes: sa ¼ 5, 10 and 20MPa. Table 4
illustrates the results of calculations at principal and superharmonic resonances.
As can be seen, the values of the coefficients R1;R2 and R3 at principal resonance do not depend

on the stress amplitude and damping level; therefore, they coincide exactly with the corresponding
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values of the nonlinear characteristics in Fig. 6. At superharmonic resonance, the nonlinearity of
the vibration response is significantly greater. For instance, the zero coefficient R1 exceeds its
values at the principal resonance by a factor between 4.0 and 4.4, the amplitude of second
harmonic R2—by a factor of 226–248 and the harmonics coefficient R3—by a factor of
185.4–203.0. At the same time all characteristics of nonlinearity at the superharmonic resonance
are dependent on the stress amplitude since, in this case, the level of stress determines the level of
the damping in a system. It follows from the results shown in Table 4 that the increase in stress
amplitude causes the decrease in the LDV of the beam—by approximately 27% over the range of
stress amplitudes being considered. Such a small decrease in damping results in a smaller change
of the characteristics of nonlinearity—approx. 10%. Clearly, from a practical point of view, the
inter-relationship between the characteristics of nonlinearity and the stress amplitude is not an
essential aspect in the range of stresses being considered.
A fundamental conclusion follows from these results: for the same crack size, but at different

stress amplitudes, various manifestations of nonlinear effects may take place. It is also necessary
to bear in mind that at small stress amplitudes, as follows from Fig. 9, a sharp increase in the LDV
takes place, which may cause a significant change of the characteristics of nonlinearity. Neglecting
this phenomenon will result in a fundamental error in the estimation of damage size. The solution
of the inverse problem of damage diagnostics, based on the measured characteristics of
nonlinearity, if the change of damping caused by a crack growth is not taken into account, will
result in an underestimation of the predicted value of damage size.
It is necessary to underline that the presented model of the beam can be used for the solution of

direct and inverse problems of damage diagnostics, in conditions of a non-propagating crack.
Otherwise the application of the theory may result in substantial and unpredictable errors.
The use of acceleration response can considerably increase the sensitivity of characteristics of

nonlinearity to the presence of a crack by up to 4 times with regard to the displacement response,
corroborated by the results of experiments and calculations presented in Table 2.
5. Conclusions

A mathematical model of the beam with a closing crack was developed which takes into
account the energy dissipated in a crack by means of the relationship between this energy and the
nominal stress intensity factor range. The model makes it possible to predict the changes of the
damping characteristic of the beam caused by the crack presence and at this condition calculates
its nonlinear behaviour.
A mathematical model of a beam with a closing crack was developed, which takes into account

the relationship between the energy dissipated in a crack and the nominal stress intensity factor
range. The model makes it possible to predict the changes of damping of cracked beam caused by
the crack presence and at this condition calculates its nonlinear behaviour.
It was shown both numerically and experimentally that the characteristics of nonlinear

distortion of vibrations at superharmonic resonance of the beam of order 2/1 (especially second
harmonic and coefficient of harmonics) are very sensitive to the presence of closing crack. At the
same time they are strongly dependent not only on the crack parameters but also on the level of
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damping in a vibrating system. The higher the level of damping, the lower the manifestation of
nonlinear effects.
The appearance of nonlinear effects when the structure is harmonically excited at a frequency,

which is a submultiple of a natural frequency, can be used to detect the presence of very small
closing cracks. However, the extent and position of the crack can be determined by using these
nonlinear behaviour only if the real level of damping in a cracked structure is accounted for.
As it seems to the authors of the present paper, one of the most complex problems in the way of

practical application of nonlinear effects for the damage diagnostics is the avoidance of pseudo-
superharmonic resonances. One possible solution to the problem was shown in the present paper.
But it is necessary to bear in mind that the adjustment of this excitation system to satisfy Eq. (29)
is extremely laborious and can hardly be recommended for wide application. Therefore, the
authors intend to continue the development of methods that will make it possible to prevent the
excitation of pseudo-nonlinear resonances.
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